

2/1/2021

Ansible Automation

By: Eng. Mohamed ElEmam Hussein
Email: Mohamed.ElEmam.Hussin@gmail.com

 1

Ansible

What is Ansible?

Ansible is simply an open-source IT engine that automates application deployment, intra service

orchestration, cloud provisioning, and many other IT tools.

Ansible is easy to deploy because it does not use any agents or custom security infrastructure.

Ansible uses playbook to describe automation jobs, and playbook uses very simple language i.e. YAML

(It’s a human-readable data serialization language & is commonly used for configuration files, but could

be used in many applications where data is being stored) which is very easy for humans to understand,

read and write. Hence the advantage is that even the IT infrastructure support guys can read and

understand the playbook and debug if needed (YAML – It is in human-readable form).

Ansible is designed for multi-tier deployment. Ansible does not manage one system at a time, it models

IT infrastructure by describing all of your systems are interrelated. Ansible is completely agentless which

means Ansible works by connecting your nodes through ssh(by default). But if you want another

method for connection like Kerberos, Ansible gives that option to you.

After connecting to your nodes, Ansible pushes small programs called “Ansible Modules”. Ansible runs

those modules on your nodes and removes them when finished. Ansible manages your inventory in

simple text files (These are the hosts file). Ansible uses the hosts file where one can group the hosts and

can control the actions on a specific group in the playbooks.

Advantages of Ansible

 Free: Ansible is an open-source tool.

 Very simple to set up and use: No special coding skills are necessary to use Ansible’s

playbooks (more on playbooks later).

 Powerful: Ansible lets you model even highly complex IT workflows.

 2

 Flexible: You can orchestrate the entire application environment no matter where it’s deployed.

You can also customize it based on your needs.

 Agentless: You don’t need to install any other software or firewall ports on the client systems

you want to automate. You also don’t have to set up a separate management structure.

 Efficient: Because you don’t need to install any extra software, there’s more room for

application resources on your server.

What is Configuration Management?

Configuration management in terms of Ansible means that it maintains the configuration of the product

performance by keeping a record and updating detailed information that describes an enterprise’s

hardware and software.

Such information typically includes the exact versions and updates that have been applied to installed

software packages and the locations and network addresses of hardware devices. E.g., If you want to

install the new version of the WebLogic/WebSphere server on all of the machines present in your

enterprise, it is not feasible for you to manually go and update every machine.

You can install WebLogic/WebSphere in one go on all of your machines with Ansible playbooks and

inventory are written most simply. All you have to do is list out the IP addresses of your nodes in the

inventory and write a playbook to install WebLogic/WebSphere. Run the playbook from your control

machine & it will be installed on all your nodes.

How Ansible Works?

The picture given below shows the working of Ansible.

Ansible works by connecting to your nodes and pushing out small programs, called "Ansible Modules"

to them. Ansible then executes these modules (over SSH by default) and removes them when finished.

Your library of modules can reside on any machine, and there are no servers, daemons, or databases

required.

 3

The management node in the above picture is the controlling node (managing node) which controls the

entire execution of the playbook. It’s the node from which you are running the installation. The

inventory file provides the list of hosts where the Ansible modules need to be run and the management

node does an SSH connection and executes the small modules on the host's machine and installs the

product/software.

 To list the host inside inventory file use command:

[ansible@ansible-control]$ ansible all -i inventory --list-hosts

 hosts (2):

 ansible-node1

 ansible-node2

 To list it as a graph use command:

[ansible@ansible-control]$ ansible-inventory all -i inventory --graph

@all:

 |--@ungrouped:

 | |--ansible-node1

 | |--ansible-node2

The beauty of Ansible is that it removes the modules once those are installed so effectively it connects

to the host machine, executes the instructions, and if it’s successfully installed removes the code which

was copied on the host machine which was executed.

 4

Ansible - Environment Setup

Installation Process

Mainly, there are two types of machines when we talk about deployment −

 Control machine − Machine from where we can manage other machines.

 Remote machine − Machines that are handled/controlled by the control machine.

There can be multiple remote machines that are handled by one control machine. So, for managing

remote machines we have to install Ansible on the control machine.

Control Machine Requirements

Ansible can be run from any machine with Python 2 (versions 2.6 or 2.7) or Python 3 (versions 3.5 and

higher) installed.

Note − Windows does not support a control machine.

By default, Ansible uses ssh to manage a remote machine.

Ansible does not add any database. It does not require any daemons to start or keep it running. While

managing remote machines, Ansible does not leave any software installed or running on them. Hence,

there is no question of how to upgrade it when moving to a new version.

Ansible can be installed on the control machine which has the above-mentioned requirements in

different ways. You can install the latest release through Apt, yum, pkg, pip, OpenCSW, Pacman, etc.

1- Add user on each machine named for example (Ansible)

2- Configure SSH login between these servers (control and remotes) without a password

3- Install Ansible:

[root@ansible-control ~] # yum install -y ansible

After running the above line of code, you are ready to manage remote machines through Ansible. Just

run Ansible --version to check the version and just to check whether Ansible was installed properly or

not.

 5

Ansible - YAML Basics

Ansible uses YAML syntax for expressing Ansible playbooks. This chapter provides an overview of YAML.

Ansible uses YAML because it is very easy for humans to understand, read and write when compared to

other data formats like XML and JSON.

Every YAML file optionally starts with “---” and ends with “...”.

Understanding YAML

In this section, we will learn the different ways in which the YAML data is represented.

key-value pair

YAML uses simple key-value pairs to represent the data. The dictionary is represented in key: value pair.

Note − There should be space between: and value.

Example: A student record

--- #Optional YAML start syntax

james:

 name: james john

 rollNo: 34

 div: B

 sex: male

… #Optional YAML end syntax

Abbreviation

You can also use abbreviation to represent dictionaries.

Example

James: {name: james john, rollNo: 34, div: B, sex: male}

Representing List

We can also represent List in YAML. Every element(member) of the list should be written in a new line

with the same indentation starting with “- “ (- and space).

Example

countries:

 6

 - America

 - China

 - Canada

 - Iceland

…

Abbreviation

You can also use the abbreviation to represent lists.

Example

Countries: [‘America’, ‘China’, ‘Canada’, ‘Iceland’]

List inside Dictionaries

We can use a list inside dictionaries, i.e., a value a key is a list.

Example

james:

 name: james john

 rollNo: 34

 div: B

 sex: male

 likes:

 - maths

 - physics

 - English

…

List of Dictionaries

We can also make a list of dictionaries.

Example

- james:

 name: james john

 rollNo: 34

 div: B

 sex: male

 likes:

 - maths

 - physics

 - English

- robert:

 name: robert richardson

 rollNo: 53

 div: B

 sex: male

 likes:

 - biology

 - chemistry

…

 7

YAML uses “|” to include newlines while showing multiple lines and “>” to suppress newlines while

showing multiple lines. Due to this we can read and edit large lines. In both cases, the indentation will

be ignored.

We can also represent Boolean (True/false) values in YAML. where boolean values can be case

insensitive.

Example

- james:

 name: james john

 rollNo: 34

 div: B

 sex: male

 likes:

 - maths

 - physics

 - English

 result:

 maths: 87

 chemistry: 45

 biology: 56

 physics: 70

 english: 80

 passed: TRUE

 messageIncludeNewLines: |

 Congratulation!!

 You passed with 79%

 messageExcludeNewLines: >

 Congratulation!!

 You passed with 79%

Some common words related to Ansible.

Service/Server − A process on the machine that provides the service.

Machine − A physical server, VM (virtual machine), or a container.

Target machine − A machine we are about to configure with Ansible.

Task − An action (run this, delete that), etc. managed by Ansible.

Playbook − The YML file where Ansible commands are written and YML is executed on a machine.

Ansible.cfg – ansible configuration file

 8

Inventory File – a file that contains all the remote ansible nodes

Ansible - Ad hoc Commands

Ad hoc commands are commands which can be run individually to perform quick functions. These

commands need not be performed later.

For example, you have to reboot all your company servers. For this, you will run the Adhoc commands

from ‘/usr/bin/ansible’.

These ad-hoc commands are not used for configuration management and deployment, because these

commands are of one-time usage.

ansible-playbook is used for configuration management and deployment.

Parallelism and Shell Commands

Reboot your company server in 12 parallel forks at a time. For this, we need to set up SSHagent for

connection.

$ ssh-agent bash

$ ssh-add ~/.ssh/id_rsa

To run reboot for all your company servers in a group, 'abc', in 12 parallel forks −

$ Ansible abc -a "/sbin/reboot" -f 12

By default, Ansible will run the above Ad-hoc commands from the current user account. If you want to

change this behavior, you will have to pass the username in Ad-hoc commands as follows −

$ Ansible abc -a "/sbin/reboot" -f 12 -u username

File Transfer

 9

You can use the Ad-hoc commands for doing SCP (Secure Copy Protocol) lots of files in parallel on

multiple machines.

Transferring file to many servers/machines

$ Ansible abc -m copy -a "src = /etc/yum.conf dest = /tmp/yum.conf"

Creating a new directory

$ Ansible abc -m file -a "dest = /path/user1/new mode = 777 owner = user1 group =

user1 state = directory"

Deleting whole directory and files

$ Ansible abc -m file -a "dest = /path/user1/new state = absent"

Managing Packages

The Ad-hoc commands are available for yum and apt. Following are some Ad-hoc commands using

yum.

The following command checks if yum package is installed or not, but does not update it.

$ Ansible abc -m yum -a "name = demo-tomcat-1 state = present"

The following command checks the package is not installed.

$ Ansible abc -m yum -a "name = demo-tomcat-1 state = absent"

The following command checks the latest version of the package is installed.

$ Ansible abc -m yum -a "name = demo-tomcat-1 state = latest"

Gathering Facts

Facts can be used for implementing conditional statements in playbook. You can find adhoc

information of all your facts through the following Ad-hoc command −

$ Ansible all -m setup

Ansible – Playbooks

 10

In this chapter, we will learn about Playbooks in Ansible.

Playbooks are the files where Ansible code is written. Playbooks are written in YAML format. YAML

stands for Yet Another Markup Language. Playbooks are one of the core features of Ansible and tell

Ansible what to execute. They are like a to-do list for Ansible that contains a list of tasks.

Playbooks contain the steps which the user wants to execute on a particular machine. Playbooks are run

sequentially. Playbooks are the building blocks for all the use cases of Ansible.

Playbook Structure

Each playbook is an aggregation of one or more plays in it. Playbooks are structured using Plays. There

can be more than one play inside a playbook.

The function of a play is to map a set of instructions defined against a particular host.

YAML is a strict typed language; so, extra care needs to be taken while writing the YAML files. There are

different YAML editors but we will prefer to use a simple editor like notepad++. Just open notepad++

and copy and paste the below yaml and change the language to YAML (Language → YAML).

A YAML starts with --- (3 hyphens)

Create a Playbook

Let us start by writing a sample YAML file. We will walk through each section written in a yaml file.

 name: install and configure DB

 hosts: testServer

 become: yes

 vars:

 oracle_db_port_value : 1521

 tasks:

 -name: Install the Oracle DB

 yum: <code to install the DB>

 -name: Ensure the installed service is enabled and running

 service:

 name: <your service name>

 11

The above is a sample Playbook where we are trying to cover the basic syntax of a playbook. Save the

above content in a file as test.yml. A YAML syntax needs to follow the correct indentation and one

needs to be a little careful while writing the syntax.

The Different YAML Tags

Let us now go through the different YAML tags. The different tags are described below −

name

This tag specifies the name of the Ansible playbook. As in what this playbook will be doing. Any logical

name can be given to the playbook.

hosts

This tag specifies the lists of hosts or host group against which we want to run the task. The hosts

field/tag is mandatory. It tells Ansible on which hosts to run the listed tasks. The tasks can be run on the

same machine or on a remote machine. One can run the tasks on multiple machines and hence hosts

tag can have a group of hosts’ entry as well.

vars

Vars tag lets you define the variables which you can use in your playbook. Usage is similar to variables

in any programming language.

tasks

All playbooks should contain tasks or a list of tasks to be executed. Tasks are a list of actions one needs

to perform. A tasks field contains the name of the task. This works as the help text for the user. It is not

mandatory but proves useful in debugging the playbook. Each task internally links to a piece of code

called a module. A module that should be executed, and arguments that are required for the module

you want to execute.

Ansible – Roles

 12

Roles provide a framework for fully independent, or interdependent collections of variables, tasks, files,

templates, and modules.

In Ansible, the role is the primary mechanism for breaking a playbook into multiple files. This simplifies

writing complex playbooks, and it makes them easier to reuse. The breaking of playbook allows you to

logically break the playbook into reusable components.

Each role is basically limited to a particular functionality or desired output, with all the necessary steps

to provide that result either within that role itself or in other roles listed as dependencies.

Roles are not playbooks. Roles are small functionality which can be independently used but have to be

used within playbooks. There is no way to directly execute a role. Roles have no explicit setting for

which host the role will apply to.

Top-level playbooks are the bridge holding the hosts from your inventory file to roles that should be

applied to those hosts.

Creating a New Role

The directory structure for roles is essential to create a new role.

Role Structure

Roles have a structured layout on the file system. The default structure can be changed but for now let

us stick to defaults.

Each role is a directory tree in itself. The role name is the directory name within the /roles directory.

$ ansible-galaxy -h

Usage

ansible-galaxy [delete|import|info|init|install|list|login|remove|search|setup] [--

help] [options] ...

Options

 -h, --help − Show this help message and exit.

 -v, --verbose − Verbose mode (-vvv for more, -vvvv to enable connection debugging)

 --version − Show program's version number and exit.

Creating a Role Directory

The above command has created the role directories.

$ ansible-galaxy init Emamrole

 13

ERROR! The API server (https://galaxy.ansible.com/api/) is not responding, please

try again later.

$ ansible-galaxy init --force --offline Emamrole

- Emamrole was created successfully

$ tree Emamrole/

Emamrole/

├── defaults

│ └── main.yml

├── files ├── handlers

│ └── main.yml

├── meta

│ └── main.yml

├── README.md ├── tasks

│ └── main.yml

├── templates ├── tests │ ├── inventory

│ └── test.yml

└── vars

 └── main.yml

8 directories, 8 files

Not all the directories will be used in the example and we will show the use of some of them in the

example.

Utilizing Roles in Playbook

This is the code of the playbook we have written for demo purpose. This code is of the playbook

Emam_orchestrate.yml. We have defined the hosts: tomcat-node and called the two roles – install-

tomcat and start-tomcat.

The problem statement is that we have a war which we need to deploy on a machine via Ansible.

- hosts: tomcat-node

roles:

 14

 - {role: install-tomcat}

 - {role: start-tomcat}

Contents of our directory structure from where we are running the playbook.

$ ls

ansible.cfg hosts roles Emam_orchestrate.retry Emam_orchestrate.yml

There is a tasks directory under each directory and it contains a main.yml. The main.yml contents of

install-tomcat are −

#Install Emam artifacts

-

 block:

 - name: Install Tomcat artifacts

 action: >

 yum name = "demo-tomcat-1" state = present

 register: Output

 always:

 - debug:

 msg:

 - "Install Tomcat artifacts task ended with message: {{Output}}"

 - "Installed Tomcat artifacts - {{Output.changed}}"

The contents of main.yml of the start tomcat are −

#Start Tomcat

-

 block:

 - name: Start Tomcat

 command: <path of tomcat>/bin/startup.sh"

 register: output

 become: true

 always:

 - debug:

 msg:

 - "Start Tomcat task ended with message: {{output}}"

 15

 - "Tomcat started - {{output.changed}}"

The advantage of breaking the playbook into roles is that anyone who wants to use the Install tomcat

feature can call the Install Tomcat role.

Breaking a Playbook into a Role

If not for the roles, the content of the main.yml of the respective role can be copied in the playbook

yml file. But to have modularity, roles were created.

Any logical entity which can be reused as a reusable function, that entity can be moved to role. The

example for this is shown above

Ran the command to run the playbook.

-vvv option for verbose output – verbose output

$ cd Emam-playbook/

This is the command to run the playbook

$ sudo ansible-playbook -i hosts Emam_orchestrate.yml –vvv

Output

The generated output is as seen on the screen −

Using /users/demo/Emam-playbook/ansible.cfg as config file.

PLAYBOOK: Emam_orchestrate.yml

1 plays in Emam_orchestrate.yml

PLAY [tomcat-node]

**

******** ***

TASK [Gathering Facts] ***

****************************** ***

Tuesday 21 November 2017 13:02:05 +0530 (0:00:00.056) 0:00:00.056 ******

 16

Using module file /usr/lib/python2.7/sitepackages/ansible/modules/system/setup.py

<localhost> ESTABLISH LOCAL CONNECTION FOR USER: root

<localhost> EXEC /bin/sh -c 'echo ~ && sleep 0'

<localhost> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo

 /root/.ansible/tmp/ansible-tmp-1511249525.88-259535494116870 `" &&

 echo ansible-tmp-1511249525.88-259535494116870="`

 echo /root/.ansible/tmp/ansibletmp-1511249525.88-259535494116870 `") && sleep

0'

<localhost> PUT /tmp/tmpPEPrkd TO

 /root/.ansible/tmp/ansible-tmp-1511249525.88259535494116870/setup.py

<localhost> EXEC /bin/sh -c 'chmod u+x

 /root/.ansible/tmp/ansible-tmp1511249525.88-259535494116870/

 /root/.ansible/tmp/ansible-tmp-1511249525.88259535494116870/setup.py && sleep 0'

<localhost> EXEC /bin/sh -c '/usr/bin/python

 /root/.ansible/tmp/ansible-tmp1511249525.88-259535494116870/setup.py; rm -rf

 "/root/.ansible/tmp/ansible-tmp1511249525.88-259535494116870/" > /dev/null 2>&1

&& sleep 0'

ok: [server1]

META: ran handlers

TASK [install-tomcat : Install Tomcat artifacts]

task path: /users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:5

Tuesday 21 November 2017 13:02:07 +0530 (0:00:01.515) 0:00:01.572 ******

Using module file

/usr/lib/python2.7/sitepackages/ansible/modules/packaging/os/yum.py

<localhost> ESTABLISH LOCAL CONNECTION FOR USER: root

<localhost> EXEC /bin/sh -c 'echo ~ && sleep 0'

<localhost> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo

 /root/.ansible/tmp/ansible-tmp-1511249527.34-40247177825302 `" && echo

 ansibletmp-1511249527.34-40247177825302="` echo

 /root/.ansible/tmp/ansible-tmp1511249527.34-40247177825302 `") && sleep 0'

<localhost> PUT /tmp/tmpu83chg TO

 /root/.ansible/tmp/ansible-tmp-1511249527.3440247177825302/yum.py

 17

<localhost> EXEC /bin/sh -c 'chmod u+x

 /root/.ansible/tmp/ansible-tmp1511249527.34-40247177825302/

 /root/.ansible/tmp/ansible-tmp-1511249527.3440247177825302/yum.py && sleep 0'

<localhost> EXEC /bin/sh -c '/usr/bin/python

 /root/.ansible/tmp/ansible-tmp1511249527.34-40247177825302/yum.py; rm -rf

 "/root/.ansible/tmp/ansible-tmp1511249527.34-40247177825302/" > /dev/null 2>

 &1 && sleep 0'

changed: [server1] => {

 "changed": true,

 "invocation": {

 "module_args": {

 "conf_file": null,

 "disable_gpg_check": false,

 "disablerepo": null,

 "enablerepo": null,

 "exclude": null,

 "install_repoquery": true,

 "installroot": "/",

 "list": null,

 "name": ["demo-tomcat-1"],

 "skip_broken": false,

 "state": "present",

 "update_cache": false,

 "validate_certs": true

 }

 },

 "msg": "",

 "rc": 0,

 "results": [

 "Loaded plugins: product-id,

 search-disabled-repos,

 subscriptionmanager\nThis system is not registered to Red Hat Subscription

Management.

 You can use subscription-manager to register.\nResolving Dependencies\n-->

 18

 Running transaction check\n--->

 Package demo-tomcat-1.noarch 0:SNAPSHOT-1 will be installed\n--> Finished

Dependency

 Resolution\n\nDependencies Resolved\n

\n==\

n

 Package Arch Version Repository

Size\n==\nInstallin

g:\n

 demo-tomcat-1 noarch SNAPSHOT-1 demo-repo1 7.1 M\n\nTransaction

Summary\n==\nInstal

l 1

 Package\n\nTotal download size: 7.1 M\nInstalled size: 7.9 M\nDownloading

 packages:\nRunning transaction

 check\nRunning transaction test\nTransaction test succeeded\nRunning

transaction\n Installing :

 demotomcat-1-SNAPSHOT-1.noarch 1/1 \n Verifying :

 demo-tomcat-1-SNAPSHOT-1.noarch 1/1 \n\nInstalled:\n

 demo-tomcat-1.noarch 0:SNAPSHOT-1 \n\nComplete!\n"

]

}

TASK [install-tomcat : debug]

**

task path: /users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:11

Tuesday 21 November 2017 13:02:13 +0530 (0:00:06.757) 0:00:08.329 ******

ok: [server1] => {

 "changed": false,

 "msg": [

 "Install Tomcat artifacts task ended with message: {

 u'msg': u'', u'changed': True, u'results':

 [u'Loaded plugins: product-id,

 search-disabledrepos,

 19

 subscription-manager\\nThis system is not registered to Red Hat

Subscription Management.

 You can use subscription-manager to register.\\nResolving Dependencies\\n-

->

 Running transaction check\\n--->

 Package demo-tomcat-1.noarch 0:SNAPSHOT-1 will be installed\\n-->

 Finished Dependency Resolution\\n

 \\nDependencies

Resolved\\n\\n==\\n

 Package Arch Version Repository

Size\\n==

 =====\\nInstalling:\\n demo-tomcat-1 noarch SNAPSHOT-1 demo-repo1 7.1

M\\n\\nTransaction

Summary\\n===\\nInstall 1

 Package\\n\\nTotal download size: 7.1 M\\nInstalled size: 7.9

M\\nDownloading

 packages:\\nRunning

 transaction check\\nRunning transaction test\\nTransaction test

succeeded\\nRunning

 transaction\\n

 Installing : demo-tomcat-1-SNAPSHOT-1.noarch 1/1 \\n Verifying :

 demo-tomcat-1-SNAPSHOT-1.noarch

 1/1 \\n\\nInstalled:\\n demo-tomcat-1.noarch 0:SNAPSHOT-1

\\n\\nComplete!\\n'], u'rc': 0

 }",

 "Installed Tomcat artifacts - True"

]

}

TASK [install-tomcat : Clean DEMO environment]

**

**

task path: /users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:19

Tuesday 21 November 2017 13:02:13 +0530 (0:00:00.057) 0:00:08.387 ******

 20

[WARNING]: when statements should not include jinja2 templating delimiters such as

{{ }} or

 {% %}. Found: {{installationOutput.changed}}

Using module file /usr/lib/python2.7/sitepackages/ansible/modules/files/file.py

<localhost> ESTABLISH LOCAL CONNECTION FOR USER: root

<localhost> EXEC /bin/sh -c 'echo ~ && sleep 0'

<localhost> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo

 /root/.ansible/tmp/ansible-tmp-1511249534.13-128345805983963 `" && echo

 ansible-tmp-1511249534.13-128345805983963="` echo

 /root/.ansible/tmp/ansibletmp-1511249534.13-128345805983963 `") && sleep 0'

<localhost> PUT /tmp/tmp0aXel7 TO

 /root/.ansible/tmp/ansible-tmp-1511249534.13128345805983963/file.py

<localhost> EXEC /bin/sh -c 'chmod u+x

 /root/.ansible/tmp/ansible-tmp1511249534.13-128345805983963/

 /root/.ansible/tmp/ansible-tmp-1511249534.13128345805983963/file.py && sleep 0'

<localhost> EXEC /bin/sh -c '/usr/bin/python

 /root/.ansible/tmp/ansible-tmp1511249534.13-128345805983963/file.py; rm -rf

 "/root/.ansible/tmp/ansible-tmp1511249534.13-128345805983963/" > /dev/null 2>&1

 && sleep 0'

changed: [server1] => {

 "changed": true,

 "diff": {

 "after": {

 "path": "/users/demo/DEMO",

 "state": "absent"

 },

 "before": {

 "path": "/users/demo/DEMO",

 "state": "directory"

 }

 },

 "invocation": {

 21

 "module_args": {

 "attributes": null,

 "backup": null,

 "content": null,

 "delimiter": null,

 "diff_peek": null,

 "directory_mode": null,

 "follow": false,

 "force": false,

 "group": null,

 "mode": null,

 "original_basename": null,

 "owner": null,

 "path": "/users/demo/DEMO",

 "recurse": false,

 "regexp": null,

 "remote_src": null,

 "selevel": null,

 "serole": null,

 "setype": null,

 "seuser": null,

 "src": null,

 "state": "absent",

 "unsafe_writes": null,

 "validate": null

 }

 },

 "path": "/users/demo/DEMO",

 "state": "absent"

}

TASK [install-tomcat : debug]

**

 22

task path: /users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:29

Tuesday 21 November 2017 13:02:14 +0530 (0:00:00.257) 0:00:08.645 ******

ok: [server1] => {

 "changed": false,

 "msg": [

 "Clean DEMO environment task ended with message:{u'diff': {u'after':

{u'path':

 u'/users/demo/DEMO', u'state': u'absent'},

 u'before': {u'path': u'/users/demo/DEMO', u'state': u'directory'}}, u'state':

u'absent',

 u'changed': True, u'path': u'/users/demo/DEMO'}",

 "check value :True"

]

}

TASK [install-tomcat : Copy Tomcat to user home]

**

task path: /users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:37

Tuesday 21 November 2017 13:02:14 +0530 (0:00:00.055) 0:00:08.701 ******

[WARNING]: when statements should not include jinja2 templating delimiters such as

{{ }} or

 {% %}. Found: {{installationOutput.changed}}

Using module file

/usr/lib/python2.7/sitepackages/ansible/modules/commands/command.py

<localhost> ESTABLISH LOCAL CONNECTION FOR USER: root

<localhost> EXEC /bin/sh -c 'echo ~ && sleep 0'

<localhost> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo

 /root/.ansible/tmp/ansible-tmp-1511249534.43-41077200718443 `" && echo

 ansibletmp-1511249534.43-41077200718443="` echo

 /root/.ansible/tmp/ansible-tmp1511249534.43-41077200718443 `") && sleep 0'

<localhost> PUT /tmp/tmp25deWs TO

 /root/.ansible/tmp/ansible-tmp-1511249534.4341077200718443/command.py

<localhost> EXEC /bin/sh -c 'chmod u+x

 /root/.ansible/tmp/ansible-tmp1511249534.43-41077200718443/

 23

 /root/.ansible/tmp/ansible-tmp-1511249534.4341077200718443/command.py && sleep

0'

<localhost> EXEC /bin/sh -c '/usr/bin/python

 /root/.ansible/tmp/ansible-tmp1511249534.43-41077200718443/command.py; rm -rf

 "/root/.ansible/tmp/ansibletmp-1511249534.43-41077200718443/" > /dev/null 2>&1

 && sleep 0'

changed: [server1] => {

 "changed": true,

 "cmd": [

 "cp",

 "-r",

 "/opt/ansible/tomcat/demo",

 "/users/demo/DEMO/"

],

 "delta": "0:00:00.017923",

 "end": "2017-11-21 13:02:14.547633",

 "invocation": {

 "module_args": {

 "_raw_params": "cp -r /opt/ansible/tomcat/demo /users/demo/DEMO/",

 "_uses_shell": false,

 "chdir": null,

 "creates": null,

 "executable": null,

 "removes": null,

 "warn": true

 }

 },

 "rc": 0,

 "start": "2017-11-21 13:02:14.529710",

 "stderr": "",

 "stderr_lines": [],

 "stdout": "",

 "stdout_lines": []

}

 24

TASK [install-tomcat : debug]

**

**

task path: /users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:47

Tuesday 21 November 2017 13:02:14 +0530 (0:00:00.260) 0:00:08.961 ******

ok: [server1] => {

 "changed": false,

 "msg": "Copy Tomcat to user home task ended with message {

 'stderr_lines': [], u'changed': True, u'end': u'2017-11-21 13:02:14.547633',

u'stdout':

 u'', u'cmd': [u'cp', u'-r', u'/opt/ansible/tomcat/demo',

u'/users/demo/DEMO/'], u'rc': 0,

 u'start': u'2017-11-21 13:02:14.529710', u'stderr': u'', u'delta':

u'0:00:00.017923',

 'stdout_lines': []}"

}

TASK [start-tomcat : Start Tomcat]

**

**

task path: /users/demo/Emam-playbook/roles/start-tomcat/tasks/main.yml:5

Tuesday 21 November 2017 13:02:14 +0530 (0:00:00.044) 0:00:09.006 ******

Using module file

/usr/lib/python2.7/sitepackages/ansible/modules/commands/command.py

<localhost> ESTABLISH LOCAL CONNECTION FOR USER: root

<localhost> EXEC /bin/sh -c 'echo ~ && sleep 0'

<localhost> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo

 /root/.ansible/tmp/ansible-tmp-1511249534.63-46501211251197 `" && echo

 ansibletmp-1511249534.63-46501211251197="` echo

 /root/.ansible/tmp/ansible-tmp1511249534.63-46501211251197 `") && sleep 0'

<localhost> PUT /tmp/tmp9f06MQ TO

 /root/.ansible/tmp/ansible-tmp-1511249534.6346501211251197/command.py

<localhost> EXEC /bin/sh -c 'chmod u+x

 /root/.ansible/tmp/ansible-tmp1511249534.63-46501211251197/

 25

 /root/.ansible/tmp/ansible-tmp-1511249534.6346501211251197/command.py && sleep

0'

<localhost> EXEC /bin/sh -c '/usr/bin/python

 /root/.ansible/tmp/ansible-tmp1511249534.63-46501211251197/command.py; rm -rf

 "/root/.ansible/tmp/ansibletmp-1511249534.63-46501211251197/" > /dev/null 2>&1

 && sleep 0'

changed: [server1] => {

 "changed": true,

 "cmd": ["/users/demo/DEMO/bin/startup.sh"],

 "delta": "0:00:00.020024",

 "end": "2017-11-21 13:02:14.741649",

 "invocation": {

 "module_args": {

 "_raw_params": "/users/demo/DEMO/bin/startup.sh",

 "_uses_shell": false,

 "chdir": null,

 "creates": null,

 "executable": null,

 "removes": null,

 "warn": true

 }

 },

 "rc": 0,

 "start": "2017-11-21 13:02:14.721625",

 "stderr": "",

 "stderr_lines": [],

 "stdout": "Tomcat started.",

 "stdout_lines": ["Tomcat started."]

}

TASK [start-tomcat : debug] ***

**

task path: /users/demo/Emam-playbook/roles/start-tomcat/tasks/main.yml:10

Tuesday 21 November 2017 13:02:14 +0530 (0:00:00.150) 0:00:09.156 ******

 26

ok: [server1] => {

 "changed": false,

 "msg": [

 "Start Tomcat task ended with message: {'

 stderr_lines': [], u'changed': True, u'end': u'2017-11-21

13:02:14.741649', u'stdout':

 u'Tomcat started.', u'cmd': [u'/users/demo/DEMO/bin/startup.sh'], u'rc':

0, u'start':

 u'2017-11-21 13:02:14.721625', u'stderr': u'', u'delta':

u'0:00:00.020024',

 'stdout_lines': [u'Tomcat started.']}",

 "Tomcat started - True"

]

}

META: ran handlers

META: ran handlers

PLAY RECAP

server1 : ok = 9 changed = 4 unreachable = 0 failed = 0

Tuesday 21 November 2017 13:02:14 +0530 (0:00:00.042) 0:00:09.198 ******

===

install-tomcat : Install Tomcat artifacts ------------------------------- 6.76s

/users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:5 --------------

Gathering Facts --- 1.52s

 --

install-tomcat : Copy Tomcat to user home ------------------------------- 0.26s

/users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:37 -------------

install-tomcat : Clean DEMO environment --------------------------------- 0.26s

/users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:19 -------------

start-tomcat : Start Tomcat --- 0.15s

 27

/users/demo/Emam-playbook/roles/start-tomcat/tasks/main.yml:5 ----------------

install-tomcat : debug -- 0.06s

/users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:11 -------------

install-tomcat : debug -- 0.06s

/users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:29 -------------

install-tomcat : debug -- 0.04s

/users/demo/Emam-playbook/roles/install-tomcat/tasks/main.yml:47 -------------

start-tomcat : debug -- 0.04s

/users/demo/Emam-playbook/roles/start-tomcat/tasks/main.yml:10 ---------------

Hit the following URL and you will be directed to a page as shown below −

http://10.76.0.134:11677/HelloWorld/HelloWorld

The deployed war just has a servlet which displays “Hello World”. The detailed output shows the time

taken by each and every task because of the entry added in ansible.cfg file −

[defaults]

callback_whitelist = profile_tasks

Ansible - Variables

Variable in playbooks are very similar to using variables in any programming language. It helps you to

use and assign a value to a variable and use that anywhere in the playbook. One can put conditions

around the value of the variables and accordingly use them in the playbook.

Example

- hosts : <your hosts>

vars:

tomcat_port : 8080

 28

In the above example, we have defined a variable name tomcat_port and assigned the value 8080 to

that variable and can use that in your playbook wherever needed.

Now taking a reference from the example shared. The following code is from one of the roles (install-

tomcat) −

block:

 - name: Install Tomcat artifacts

 action: >

 yum name = "demo-tomcat-1" state = present

 register: Output

 always:

 - debug:

 msg:

 - "Install Tomcat artifacts task ended with message: {{Output}}"

 - "Installed Tomcat artifacts - {{Output.changed}}"

Here, the output is the variable used.

Let us walk through all the keywords used in the above code −

 block − Ansible syntax to execute a given block.

 name − Relevant name of the block - this is used in logging and helps in debugging that which

all blocks were successfully executed.

 action − The code next to action tag is the task to be executed. The action again is a Ansible

keyword used in yaml.

 register − The output of the action is registered using the register keyword and Output is the

variable name which holds the action output.

 always − Again a Ansible keyword , it states that below will always be executed.

 msg − Displays the message.

Usage of variable - {{Output}} -->

This will read the value of variable Output. Also as it is used in the msg tab, it will print the value of the

output variable.

 29

Additionally, you can use the sub properties of the variable as well. Like in the case checking

{{Output.changed}} whether the output got changed and accordingly use it.

Exception Handling in Playbooks

Exception handling in Ansible is similar to exception handling in any programming language. An

example of the exception handling in playbook is shown below.

tasks:

 - name: Name of the task to be executed

 block:

 - debug: msg = 'Just a debug message , relevant for logging'

 - command: <the command to execute>

 rescue:

 - debug: msg = 'There was an exception.. '

 - command: <Rescue mechanism for the above exception occurred)

 always:

 - debug: msg = "this will execute in all scenarios. Always will get

logged"

Following is the syntax for exception handling.

 rescue and always are the keywords specific to exception handling.

 Block is where the code is written (anything to be executed on the Unix machine).

 If the command written inside the block feature fails, then the execution reaches rescue block

and it gets executed. In case there is no error in the command under block feature, then rescue

will not be executed.

 Always gets executed in all cases.

 So if we compare the same with java, then it is similar to try, catch and finally block.

 Here, Block is similar to try block where you write the code to be executed and rescue is similar

to catch block and always is similar to finally.

 30

Loops

Below is the example to demonstrate the usage of Loops in Ansible.

The tasks is to copy the set of all the war files from one directory to tomcat webapps folder.

Most of the commands used in the example below are already covered before. Here, we will

concentrate on the usage of loops.

Initially in the 'shell' command we have done ls *.war. So, it will list all the war files in the directory.

Output of that command is taken in a variable named output.

To loop, the 'with_items' syntax is being used.

with_items: "{{output.stdout_lines}}" --> output.stdout_lines gives us the line by line output and then we

loop on the output with the with_items command of Ansible.

Attaching the example output just to make one understand how we used the stdout_lines in the

with_items command.

#Tsting

- hosts: tomcat-node

 tasks:

 - name: Install Apache

 shell: "ls *.war"

 register: output

 args:

 chdir: /opt/ansible/tomcat/demo/webapps

 - file:

 src: '/opt/ansible/tomcat/demo/webapps/{{ item }}'

 dest: '/users/demo/Emam/{{ item }}'

 state: link

 with_items: "{{output.stdout_lines}}"

Blocks

 31

The playbook in totality is broken into blocks. The smallest piece of steps to execute is written in block.

Writing the specific instruction in blocks helps to segregate functionality and handle it with exception

handling if needed.

Example of blocks is covered in variable usage,exception handling and loops above.

Conditionals

Conditionals are used where one needs to run a specific step based on a condition.

#Tsting

- hosts: all

 vars:

 test1: "Hello Emam"

 tasks:

 - name: Testing Ansible variable

 debug:

 msg: "Equals"

 when: test1 == "Hello Emam"

In this case, Equals will be printed as the test1 variable is equal as mentioned in the when condition.

when can be used with a logical OR and logical AND condition as in all the programming languages.

Just change the value of test1 variable from Hello Emam to say Hello World and see the output.

Ansible - Advanced Execution

In this chapter, we will learn what is advanced execution with Ansible.

How to Limit Execution by Tasks?

This is a very important execution strategy where one needs to execute only one execution and not the

entire playbook. For example, suppose you only want to stop a server (in case a production issue

comes) and then post applying a patch you would like to only start the server.

Here in original playbook stop and start were a part of different roles in the same playbook but this can

be handled with the usage of tags. We can provide different tags to different roles (which in turn will

 32

have tasks) and hence based on the tags provided by the executor only that specified role/task gets

executed. So for the above example provided, we can add tags like the following −

- {role: start-tomcat, tags: ['install']}}

The following command helps in using tags −

ansible-playbook -i hosts <your yaml> --tags "install" -vvv

With the above command, only the start-tomcat role will be called. The tag provided is case-sensitive.

Ensure exact match is being passed to the command.

How to Limit Execution by Hosts?

There are two ways to achieve the execution of specific steps on specific hosts. For a specific role, one

defines the hosts - as to which specific hosts that specific role should be run.

Example

- hosts: <A>

 environment: "{{your env}}"

 pre_tasks:

 - debug: msg = "Started deployment.

 Current time is {{ansible_date_time.date}} {{ansible_date_time.time}} "

 roles:

 - {role: <your role>, tags: ['<respective tag>']}

 post_tasks:

 - debug: msg = "Completed deployment.

 Current time is {{ansible_date_time.date}} {{ansible_date_time.time}}"

- hosts:

 pre_tasks:

 - debug: msg = "started....

 Current time is {{ansible_date_time.date}} {{ansible_date_time.time}} "

 roles:

 - {role: <your role>, tags: ['<respective tag>']}

 post_tasks:

 33

 - debug: msg = "Completed the task..

 Current time is {{ansible_date_time.date}} {{ansible_date_time.time}}"

As per the above example, depending on the hosts provided, the respective roles will only be called.

Now my hosts A and B are defined in the hosts (inventory file).

Alternate Solution

A different solution might be defining the playbook's hosts using a variable, then passing in a specific

host address via --extra-vars −

file: user.yml (playbook)

- hosts: '{{ target }}'

 user: ...

playbook contd….

Running the Playbook

ansible-playbook user.yml --extra-vars "target = "<your host variable>"

If {{ target }} isn't defined, the playbook does nothing. A group from the hosts file can also be passed

through if need be. This does not harm if the extra vars is not provided.

Playbook targeting a single host

$ ansible-playbook user.yml --extra-vars "target = <your hosts variable>" --

listhosts

Ansible - Troubleshooting

The most common strategies for debugging Ansible playbooks are using the modules given below −

Debug and Register

These two are the modules available in Ansible. For debugging purpose, we need to use the two

modules judiciously. Examples are demonstrated below.

Use Verbosity

With the Ansible command, one can provide the verbosity level. You can run the commands with

verbosity level one (-v) or two (-vv).

Important Points

In this section, we will go through a few examples to understand a few concepts.

 34

If you are not quoting an argument that starts with a variable. For example,

vars:

 age_path: {{Emam.name}}/demo/

{{Emam.name}}

This will throw an error.

Solution

vars:

 age_path: "{{Emam.name}}/demo/" – marked in yellow is the fix.

How to use register -> Copy this code into a yml file say test.yml and run it

#Tsting

- hosts: tomcat-node

 tasks:

 - shell: /usr/bin/uptime

 register: myvar

 - name: Just debugging usage

 debug: var = myvar

When I run this code via the command Ansible-playbook -i hosts test.yml, I get the output as shown

below.

If you see the yaml , we have registered the output of a command into a variable – myvar and just

printed the output.

The text marked yellow, tells us about property of the variable –myvar that can be used for further flow

control. This way we can find out about the properties that are exposed of a particular variable. The

following debug command helps in this.

$ ansible-playbook -i hosts test.yml

PLAY [tomcat-node] ***

**************** **

*************** ******************************

 35

TASK [Gathering Facts]

************** ***

************** **************************

Monday 05 February 2018 17:33:14 +0530 (0:00:00.051) 0:00:00.051 *******

ok: [server1]

TASK [command] **

************* **

************* **********************************

Monday 05 February 2018 17:33:16 +0530 (0:00:01.697) 0:00:01.748 *******

changed: [server1]

TASK [Just debugging usage]

**

************* **

************* *********************

Monday 05 February 2018 17:33:16 +0530 (0:00:00.226) 0:00:01.974 *******

ok: [server1] => {

 "myvar": {

 "changed": true,

 "cmd": "/usr/bin/uptime",

 "delta": "0:00:00.011306",

 "end": "2018-02-05 17:33:16.424647",

 "rc": 0,

 "start": "2018-02-05 17:33:16.413341",

 "stderr": "",

 "stderr_lines": [],

 "stdout": " 17:33:16 up 7 days, 35 min, 1 user, load average: 0.18, 0.15,

0.14",

 "stdout_lines": [

 " 17:33:16 up 7 days, 35 min, 1 user, load average: 0.18, 0.15, 0.14"

]

 }

}

 36

PLAY RECAP

**

**

server1 : ok = 3 changed = 1 unreachable = 0 failed = 0

Common Playbook Issues

In this section, we will learn about the a few common playbook issues. The issues are −

 Quoting

 Indentation

Playbook is written in yaml format and the above two are the most common issues in yaml/playbook.

Yaml does not support tab based indentation and supports space based indentation, so one needs to

be careful about the same.

Note − once you are done with writing the yaml , open this site(https://editor.swagger.io/) and copy

paste your yaml on the left hand side to ensure that the yaml compiles properly. This is just a tip.

Swagger qualifies errors in warning as well as error.

Resources

https://www.ansible.com/

https://docs.ansible.com/ansible/latest/index.html

https://en.wikipedia.org/wiki/Ansible_(software)

https://github.com/ansible/ansible

https://opensource.com/resources/what-ansible

https://www.simplilearn.com/tutorials/ansible-tutorial/what-is-ansible

https://www.guru99.com/ansible-tutorial.html

https://hackr.io/tutorials/learn-ansible

